

Proper risk assessments and effective regulation – is there ever acceptable risk?

Martin H Goose BSc DIS CEng FIChemE

Institution of Chemical Engineers
ChemEnvoy for Safety and Loss Prevention

Formerly Head of Major Hazards Assessment Unit, HSE Hazardous Installations Directorate, UK

Synopsis

- Yes!
- 'Tolerable' not 'Acceptable'
- The cost of accidents
- Risk Assessment and Cost Benefit Analysis
- Valuing safety benefits in monetary terms
- Establishing a policy on safety spend
- References and further information

Tolerable Risk

- All life, and the activities we pursue, involve a chance of harm.
- Hazard and Risk must be managed down to a tolerable level
- What is Tolerable is situation dependent and usually set by Governments and Regulators (if at all!)
- But Operators must have their own view

Tolerable Risk Example

Odds of being involved in a fatal accident

Odds of being on an airline flight which results in at least one fatality	Odds of being killed on a single airline flight
78 major world airlines 1 in 3.4 million	78 major world airlines 1 in 4.7 million
Top 39 airlines with the best accident rates 1 in 10.0 million	Top 39 airlines with the best accident rates 1 in 19.8 million
Bottom 39 with the worst accident rates 1 in 1.5 million	Bottom 39 with the worst accident rates 1 in 2.0 million

Source: OAG Aviation & PlaneCrashInfo.com accident database, 20 years of data (1993 - 2012)

But I still decided to fly here to speak here today!!

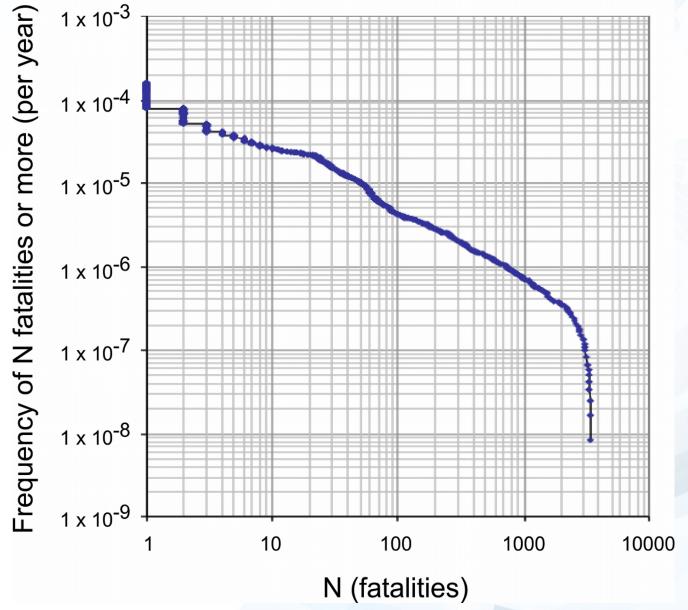
The Cost of Accidents

DATE	PLANT TYPE	EVENT TYPE	LOCATION	COUNTRY	PROPERTY LOSS (US\$ MILLIONS)
07/06/1988	UPSTREAM	EXPLOSION	NORTH SEA	UK	1,860
10/23/1989	PETROCHEMICALS	EXPLOSION	PASADENA, TEXAS	USA	1,440
04/01/2015	UPSTREAM	FIRE	BAY OF CAMPECHE	MEXICO	>1,000
06/04/2009	UPSTREAM	COLLISION	NORTH SEA	NORWAY	860
03/13/1989	UPSTREAM	EXPLOSION	GULF OF MEXICO	USA	850
01/15/2001	UPSTREAM	EXPLOSION	CAMPOS BASIN	BRAZIL	810
09/25/1998	GAS PROCESSING	EXPLOSION	LONGFORD, VICTORIA	AUSTRALIA	770
04/24/1988	UPSTREAM	BLOWOUT	CAMPOS BASIL	BRAZIL	720
09/21/2001	PETROCHEMICALS	EXPLOSION	TOULOUSE	FRANCE	690
06/25/2000	REFINERY	EXPLOSION	MINA AL- AHMADI	KUWAIT	680
05/04/1988	PETROCHEMICALS	EXPLOSION	HENDERSON, NEVADA	USA	660
01/19/2004	GAS PROCESSING	EXPLOSION	SKIKDA	ALGERIA	650
05/05/1988	REFINERY	EXPLOSION	NORCO, LOUISIANA	USA	630

Hidden Costs

Risk Analysis/Assessment

- Risk Analysis
 The process of identifying sources of potential harm, assessing the likelihood that harm will occur and the consequences if harm does occur
- Risk Assessment
 The process of risk analysis together with the value judgements made concerning the significance of the results


"Risk assessment data is like a captured spy. If you torture it long enough it will tell you anything you want to know"

W M Ruckelshaus, Former Head of US EPA

FN Plot for a Hypothetical Chlorine Installation

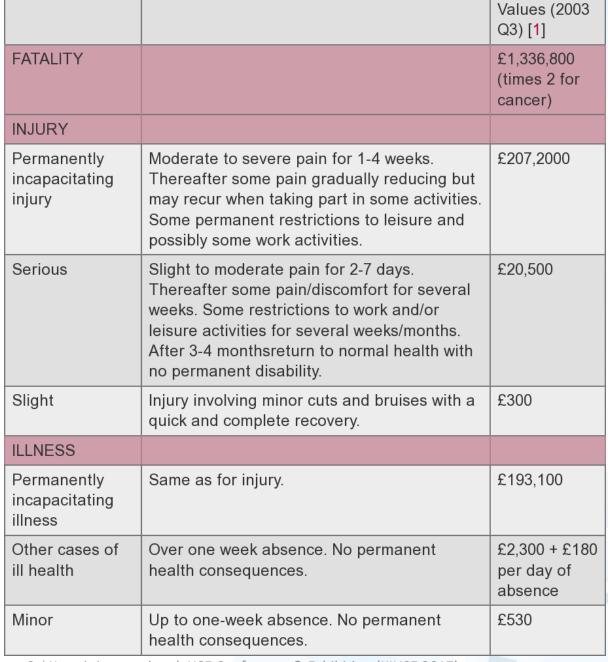
Societal Risk FN Curve

Valuing Harms (etc) Averted by Safety Measures

- Human harms (deaths, serious injuries, minor injuries etc)
- Harm to the Environment (natural and built)
- Avoidance of deployment of emergency services
- Avoidance of countermeasures such as evacuation
- Post accident decontamination
- Disruption to lives of others (during and after incident)
- Other harms, or costs falling on others, that might be required in different jurisdictions

Costs of Applying a Safety Measure

- Installation, operation, training
- Additional maintenance
- Business losses that would follow from any shutdown of the plant
- Ongoing production losses as a result of the measure
- Any savings as a result of the measure should be offset against the costs
- Other costs that might be allowable in different jurisdictions



Example

- Consider a plant with a process that if it were to explode could lead to:
 - 20 fatalities
 - 40 permanently injured
 - 100 seriously injured
 - 200 slightly injured
- The rate of this explosion happening has been analysed to be about 1×10^{-5} per year, which is 1 in 100,000 per year. The plant has an estimated lifetime of 25 years.
- How much could the company reasonably spend to eliminate (reduce to zero) the risk from the explosion

Example (Human Harms only)

Example

Harm Type	Number	'Value of Averting'	Frequency	Plant Lifetime	'Overall Value of Averting'
Fatalities	20	£1,336,800	1 x 10 ⁻⁵ yr ⁻¹	25 yr	£6,684
Permanent injuries	40	£207,200	1 x 10 ⁻⁵ yr ⁻¹	25 yr	£2,072
Serious injuries	100	£20,500	1 x 10 ⁻⁵ yr ⁻¹	25 yr	£512
Slight Injuries	200	£300	1 x 10 ⁻⁵ yr ⁻¹	25 yr	£15
Total benefits					£9,283

Establishing a policy on safety spend

- Take account of particular requirements of the operating jurisdiction
- Set out a policy on benefits
- Set out a policy on costs
- Set out a policy in the discounting of future costs/benefits
- Consider other harms to be included e.g. reputational damage, share price, etc
- Consider whether to apply a bias in favour of safety
- Set out a policy on Sensitivity Analysis
- Document the policy

References

- The 100 Largest Losses in the Hydrocarbon Industry, 24th edition, marsh.com research pages
- The Cost of Accidents at Work, HS(G)96, 2nd Edition, 1997, HSE Books
- The Cost to Britain of Workplace Accidents and Work-Related III Health in 1995/96, HS(G)101, 2nd Edition, 1999, HSE Books
- HSE ALARP suite of guidance <www.hse.gov.uk/risk/expert.htm>
- Author's web site <www.alarp.plus.com>

